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Considering a space c[Q, H) of continuous functions, supplied with the sup
norm, from a compact or not compact topological space Q into a unitary space
H, an investigation is made of sufficient conditions for Q and H in order that
best approximations can be characterized completely by means of a Kolmogorov
criterion. The results obtained constitute an extension of earlier work by Brosowski
for the case of compact metric Q and arbitrary unitary H.

1. INTRODUCTION

The approximation problem as treated by Brosowski [1] for spaces c[Q, H]
of continuous functions from a compact metric space Q into a unitary space
H, and supplied with the sup-norm, seems to be one of the most general
problems studied in the literature, where best approximations are charac
terized by means of a Kolmogorov criterion for the set of extremal points
of the error function.

Let G C C[Q, H] be the set of approximants, and f E c[Q, H], f ¢ G.
Then Brosowski's main result [I, p.78] states that a best approximation
s E G to f can be characterized by means of a Kolmogorov criterion if and
only if G satisfies some regularity property.

In this paper an attempt is made to extend this characterization theorem
to the case that Q is an arbitrary topological space. Since now also non
compact spaces are involved, we extend Brosowski's regularity definition
in the following way:

DEFINITION 1. The set G C c[Q, H] is called regular if for each pair
S, T E G, II T - S [I < oo,/or each closed subset A of Q and for each function
FE c[Q, H], 11 FII < 00, the inequality

inf {Re<F(x), (T - s)(x)} > 0,
xEA
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implies that Jor each t E Ro< there exists a T t E G such that

inf {2 Re(F(x), (Tt - S)(x»- II(S - T t )(x)li2 : > 0, (R1)
xEA

and

S - T t <: t.

In this definition C -> denotes an inner product and ReC .) its real part;
[: . : is the norm defined by the square root of an inner product.

Noncompactness of Q also implies that the error functionJ - S can attain
its supreme norm value in a subset of elements of Q which are not extremal
points. Therefore we will use a Kolmogorov criterion on open set O(e)
defined by

O(e) = {x E Q: IU - S)(x)II > \If - S !.I - e}, (1.1)

where e is an arbitrary positive number. Then, by using arguments similar
to those of Brosowski it can be shown that the direct characterization theorem
holds for arbitrary Q and arbitrary unitary spaces H, i.e., characterization
by means of a Kolmogorov criterion is a consequence of the regularity of G
in the sense of Definition I. We state this as

THEOREM I. Let Gf be the set {T E G: II J - T <: oo}. If G is regular,
then S EGis a best approximation to JE C[Q, H], JrI= G, iff for all T E Gf

and all positive numbers e:

inf {Re«(f - S)(x), (T - S)(x»} ~ 00 #
xEO(e)

(1.2)

Following Brosowski, we will say that G has the NS property when the
statement that S is a best approximation to J holds true iff S satisfies the
Kolmogorov criterion (1.2).

ft turns out that the inverse characterization theorem, i.e., the regularity
of G being a consequence of the NS property, only holds true for certain
classes of topological spaces Q and unitary spaces H. The keystone in the
proof of the inverse theorem for compact metric Q is the construction of a
function g = J - S such that

f~(x)
g(x) = ;t--fO(.)1

1
'

". 1 .X "

X E A; I! g(x)l! <: 1, x E Q\A, (1.3)

where A is an arbitrary closed subset of Q, Sand T are elements of G, and
It E C[Q, H] satisfies the inequality

inf {Re(f~(x), (T - S)(x»} > O.
xEA

(104)



CHARACTERIZABILlTY OF APPROXIMATIONS 179

Since (1.4) is the negation of the classical Kolmogorov criterion, it follows
that S is not a best approximation to f; then by standard arguments it is
proved that G is regular. In extending the method for constructing g to the
case of an arbitrary topological space Q, we must observe that (1.4) implies
the existence of an open neighborhood Ao of A such that

inf {Re(U - S)(x), (T - S)(x)} > O.
XEA o

(1.5)

But (1.5) not necessary implies the negation of the Kolmogorov criterion (1.2).
To ensure that (1.5) implies the negation of (1.2) we must construct g in such
a way that there exists a set O(e), e E Ro+, which satisfies A C O(e) ~ A o .

Therefore we raise the following problem: Let there be given a closed
subset of Q, and a function f: Q -->- H, def(f) = A, f continuous on A in
the space Q. What conditions must be imposed on Q and H in order that
there exists a function g E c[Q, H], def( g) = Q, such that

(i) g(x) = f(x) for x E A;

(ii) II g(x)!1 < sup II g(x)!1 for x E Q\A;
xEA

(iii) there exists a countable set {Oi}' i E I, of nested open
neighborhoods of A satisfying the conditions:

(1.6)

(1.7)

(a) nO,; = A;
ieI

for j < i; (1.8)

(b) sup il g(x)11 ~ sup II g(x)11 < sup II g(x)ll, i < j,
xEX i xeXj XEA

with X,; = Q\Qi; (1.9)

(c) for each open neighborhood Ao of A there exists a
set 0i such that Oi ~ Ao .

In the formulation of this problem the concept of a countable set of nested
open sets is to be understood as follows:

DEFINITION 2. A countable set of nested open sets {En: n E I} of a
a topological space is a set such that for each pair n, m, n < m,
En ~ c(En) ~ Em , where c is the closure operator.

Urysohn proved the existence of such a function g in the case Q is compact
metric, H = R (see Brosowski [1, p. 14]); Brosowski [1, p. 15] did the same
for compact metric Q and arbitrary H, by using an extension of Tietze's
theorem.

For solving the above problem, we will use some other extensions of
Tietze's. theorem (Section 2) and an extension of Urysohn's theorem
(Section 4). Section 3 is devoted to the construction of open sets satisfying
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the conditions (iii). Tn the last section all results are assembled, leading to the
final formulation of a generalized inverse characterization theorem. The
meaning of symbols introduced here will be maintained throughout the
paper.

The extension of Brosowski's characterization theorem, as presented here,
is an ontgrowth of earlier work by the first author [2. Chap. I].

2. SOME EXTENSIONS OF TIETZE'S THEOREM

The purpose of this section is to find classes of topological spaces Q and
unitary spaces H allowing for an extension gl E crQ, H] of a given function
f: Q -+ H, def(f) = A, with A a closed subset of Q, and f continuous on
A in Q, which satisfies

&(x) = f(x) for x E A;

gl(Q) C convex hull of f(A).

(2.1)

(2.2)

To this end we consider the classes N, CN, and M of normal topological
spaces, collectionwise normal topological spaces (Dowker [3]) and metric
spaces, respectively. Moreover we will use the following topological concepts.

DEFINITION 3 (Hanner [4]). A topological space X is an extension space
(ES) for a class W of topological spaces, if for each Q E W, for each closed
subset B of Q, and for each function h: Q -+ X, def(h) = B, h continuous
on B in Q, there exists an extension h* E C[Q, X] of h. We denote this as
XEES(W).

DEFINITION 4 (Hanner [4]). An absolute G8-space is a metric space
which, whenever it is imbedded in a metric space, is a countable intersection
of open sets.

Extension spaces for various classes Ware studied in the theory of absolute
retracts (Hanner [5, 6]). Hu [7] has shown that the class of absolute G8-spaces
is equivalent with the class of complete metric spaces.

A first solutuion to the problem (2.1, 2.2) is provided by

THEOREM 2 (Extension theorem of Tietze, see Pervin [8, p. 89]). A
topological space Q is normal ifffor each closed subset A C Q and each function
f: Q -+ R, def(f) = A, f(A) C [a, b], f continuous on A in Q, there exists
and extensiong1 E C[Q, R] such that gl(X) = f(x)for x E A, and&(Q) C [a, b];
i.e., [a, b] E ES(N). #
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A second solution arises as a special case of a theorem by Dugundji [9]:

THEOREM 3. A unitary space and any convex subset of it is an ES(M). #

A connection between the classes ES(N) and ES(M) is given by Dowker [3]:

LEMMA A. Let Y be a metric space. Then Y E ES(N) iff Y E ES(M) and Y
is a separable absolute Ga-space (i.e., a separable complete metric space). #

This lemma allows for a third solution to problem (2.1, 2.2).

THEOREM 4. A separable complete unitary space H and each closed
convex subset E of it belongs to ES(N).

Proof. Since E is convex, Theorem 3 implies that E E ES(M). Further, E
is complete (Kantorovich [10, p. 10]). On the other hand a separable metric
space is second axiom (Pervin [8, p.lO]) and a second axiom space is
(hereditarily) separable (Pervin [8, p. 84]). Hence E is a separable complete
metric space. Application of Lemma A then completes the proof. #

Since each metric space has a completion and the completion of a unitary
space is a unitary space (Kantorovich [10, pp. 12, 80]), the condition of
completeness imposed on H is a weak one. However, the condition for H
to be separable is stronger, since the class of separable metric spaces is
equivalent with the class of second axiom spaces (Pervin [8, p. 104]). We can
get rid of this restriction upon H by means of

LEMMA B (Dowker [3]). Let Y be a metric space. Then Y E ES(CN)
iff Y E ES(M) and Y is an absolute Ga-space. #

As a corollary we then obtain

THEOREM 5. A complete unitary space and each closed convex subset
of it belongs to ES(CN). #

We summarize all solutions found for problem (2.1, 2.2) in

THEOREM 6. If (i) Q E N, H = R or (ii) Q E M, H unitary or (iii) Q E N,
H separable complete unitary or (iv) Q E CN, H complete unitary, then for
each f: Q -+ H, def(f) = A, f continuous on A in the space Q, there exists
an extension gl E c[Q, H] which satisfies the condition (2.1) and (2.2). #

3. CONSTRUCTION OF A COUNTABLE SET OF NESTED OPEN NEIGHBORHOODS
OF A CLOSED SET

For constructing a family {Oi} of open sets satisfying the condition (iiia)
of the problem stated in the Introduction, we will use the concept of a per-
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fectly normal topological space (see Dowker [11]); a normal topological
space Q is perfect if and only if each closed set of Q is the countable inter
section of open sets. It is well-known that all metric spaces are perfectly
normal. Poleunis [12] shows that regular second axiom spaces, regular first
axiom paracompact spaces, and some other spaces are also perfectly normal.

THEOREM 7. Let Q be perfectly normal and Ao an open neighborhood of
the closed subset A. Then there exists a countable family {oi : i E Z} of nested
open neighborhoods of A such that

nO.=A·, ,
iEZ

(3.1 )

Proof Since Q is normal, for each mE Z, there exist open sets Xm

such that

with c denoting the closure of a set (see Pervin [8, p. 88]. Hence the sequence
{Xi' i E Z} of nested open neighborhoods of A satisfies the second condition
(3.1).

Since Q is perfectly normal there exists a sequence {Vi' i E Z-} of open
neighborhoods of A, satisfying the first condition (3.1). With this sequence
we define another, {Pi' i E Z-}, as follows:

with Po' an open neighborhood of A;

Next define

Oi = Xi n Pi, i E Z-;

Since

and

the family {Oi} satisfies both conditions (3.1). #
By imposing additional conditions on Q, we let the sequence {Oi} satisfy
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the condition that, for some i, 0i k Ao , Ao being an arbitrary open
neighborhood of A (see condition (iiic) in the Introduction). The topological
concept we use here is alepho-compactness.

LEMMA C (Kowalsky [13, p. 87]. A topological space is alepho-compact
ifffor each sequence {An, n EN} ofnonempty closed monotonically decreasing
subsets of Q, nneN An 7'= 0. #

Then we are able to prove

THEOREM 8. Let Q be a perfectly normal alepho-compact topological
space, and A a closed subset of it. Then there exists a countable family of
nested open neighborhoods 0i of A such that, for each neighborhood Ao of
A: (i) the conditions (3.1) hold; (ii) there exists an element 0i of this family
which is a subset ofAo .

Proof. Consider the sequence {Oi' i E Z}, constructed in the proof of
Theorem 7. Assume that for all i E Z there exists an element z of Q such that
Z E Oi n Aoc. Since

we have

n{C(Oi) n Aoc} = n{Oi n AoC}.
ieZ ieZ

Hence the sequence {Wi' i E Z}, Wi = C(Oi) n Aoc decreases monotonically
for i ~ - 00, while each Wi is nonempty and closed. It then follows from
Lemma C that nieZ Wi 7'= 0, contradicting statement (i). Hence the negation
of statement (ii) is false. #

4. AN' EXTEN'SION OF URYSOHN'S THEOREM

In this section we state and prove an extension of Urysohn's theorem under
the conditions that Q is perfectly normal and alepho-compact, and H = R.
This is based on a definition and a lemma.

DEFINITION 5. We call the set of dyadic fractions Q* the set of fractions
belonging to ]0, 1[ and whose denominates are powers of 2.

LEMMA D. Let Q be perfectly normal and alepho-compact, Al and A2

disjoint closed subsets of Q, and Au an open neighborhood of Al . Then there
exist totally ordered sets VI = {Ou , t E M1}, M I = Q* n ]0, U and
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V2 = {02,t, t E M 2}, M 2 ~c Q* n g, 1[, of nested open neighborhoods of Al
and A 2 , respectively, such that

(i) if(-li11 t1 < (- I )H1 t2then C(OJ,f) c::; c( OJ,I)' (11 , (2) E M J X M j ,

j = 1,2;

(ii) A j = ntEM
j

OJ,t, j = 1,2; UtEM, Ou c::; Au; UtEM
2

02.t c::; i(Ai,l);

(iii) for each arbitrary open neighborhood of A J there exists an element
OJ,t of Vj which is a subset of it (j = 1,2).

Proof. Theorem 8 guarantees the existence of families UJ = {OJ,i' i E Z},
j = 1,2, satisfying the conditions (ii) and (iii) for M j = Z. In order to
construct VI out of the family U1 we define a mapping from Q* n ]0, H
to U1 as follows:

Consider the element 01.0 E Uj . Then Al c::; 01,0 c::; c(Ol,o) c::; ALl' This chain
of inclusions can be enlarged to

(3.2)

where the existence of the open sets 0~1 , 0 1* is guaranteed by the normality
of Q; we consider them as the images of the elements -lIJ and 1%, respectively,
of Q* n ]0, t[, i.e., half the sum of the elements which are mapped onto
the adjacent open sets 01,-1 , 01.0 and 01.0, 0Ll , respectively.

The chain (3.2) can be enlarged successively by adding sets 01,-j and 0l,j
to the left and the right, respectively, j = 2, 3, .. " and by inserting again and
again an open set between each two adjacent open sets already present, while
considering it as an image of an element of Q * n ]0, t[ being the half-sum
of the elements mapped onto these adjacent sets. It is easy to see that we
obtain in this manner a totally ordered family VI which satisfies the conditions
(i)-(iii). The family V2 can be constructed in a completely similar way. #

THEOREM 9 (Extension of Urysohn's theorem). Let the assumptions
Lemma D hold. Assumefurther thatf: Q --+ R, def(j) = Al U A 2 ,f(A1) = {O},
f(A 2) = {I}, andfcontinuous on Al U A 2in the space Q. LetJor each (11 , t2) E

M 1 X M 2 , 0(11' t2) be the set Q\(OU
1

U 02.tJ Then there exists an extension
g E c[Q, R] offwhich satisfies the following conditions:

(i) g(x) = f(x), X E Al U A 2 ;

(ii) infxEo, g(x) ~ t for t E M 2 and SUPXEO g(x) ~ t for t E M 1 ;
2,t 1.t
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(iii) SUPa:EO<V2) g(x) ~ t 2 and infrEo(tl,t2) g(x) ;?: t 1 for (tl' t 2) E

M 1 X M 2 ;

(iv) for each t 1 < Ul , t 2 > U2 , (tl , t 2), (ul , u2) E M 1 X M 2 :

°< inf g(x) ~ inf g(x) ~ sup g(x) ~ sup g(x) < 1.
a:=Oltl't2) a:EO(Ul'U2) a:EO(Ul'U,) a:EO(tl't2)

Proof We define a function g(x) as

g(x) = inf t,
XE°l,t

= sup t,
xe02 .t

X E i(A~,I)'

X E Q\(Al.l U i(A~.I))'

(3.3)

Since U1 C VI and U2 C V2 it is readily seen from (3.3) that g satisfies
condition (i).

Now we prove that g E qQ, R]. This can be achieved by showing that
g-l([O,pD and g-1(]q, 1]), p, q E ]0,1[, are open in Q (see Lipschutz [14,
p. 103]). Since M l is dense in [0, H there exists, for a number PI ~ t and an
x E g-I([O, PlD, a ta: E M 1 such that g(x) < ta: < PI . From the definition of
g(x) it then follows that x E Ol.t% ' and hence

g-1([0, PID c:;; U 01,t·
t<P 1
tEM l

To prove the inverse inclusion, consider an element y of the right member set.
Then there exists a t y E M I such that t y < PI' Y E 01,t. and hence
y E g-l([O, PID. This proves that

g-I([O, pJ) = U 01,t.
t<P1
tEMl

It can be shown in an analogous way that, for ql ;?: t:

g-1(]ql' 1]) = U O2.1,
t>ql
tEM2

(3.3)

(3.5)

It is evident that the sets given by (3.4) and (3.5) are both open for PI ~ t,
ql ;?: t. We prove that g-I([O, PlD and g-l(]ql , 1]) for PI > i and ql < t,
respectively, are also open. Consider the set

P = U [c(Ol,t)]C.
t>ql
tEMl
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For an x such that g(x) EO )(jl , 1[ there are elements tI , 12 of M1 such that
qI < 11 < 12 < g(x). Hence x rt 01,1, . Since 11 < 12we have 01,1. (~ c(01,1) L
01,1, ; consequently x E [c( 01,l))C and g~I(]ql , l)) C P. To prove the inverse
inclusion, consider aYE P. Then there exists a I" E M I such that I" ..~. (jl

and Y E [c(Ou)Y. Furthermore, for I < I y we have 01,1 C 01,1.= ('(01,1)
and hence Y rt 01,1 . Thus g( y) ;., I" qj and y E g-l()(j] , ID. This proves
that g-I(]qI , 1D ~~ P. By similar arguments

g-l([O, PlD = U [c(02,t)y.
t<p.
tEM,

From this it follows that g-I([O, PID and g-l(]ql' I)) for PI :> ~, qI < -L
respectively, are both open. Consequently g(x) is continuous.

Next, we prove statement (iii). Assume that r ecce inCcEo g(x) < I. Then
2.1

there exists a 11 E M 2 such that I' < 11 < t and hence an x E 02,1 such that
x rt 02,11' contradicting the fact that 02,t C O2,1.' The second inequality
(ii) is proved similarly.

To prove statement (ii), assume that r~:::o SUPXEO(t
1
.t

2
) g(x) 12 , Then

there exists a u E M 2 such that I' > u > t2 and hence an x E 0(11 , 12) such that
g(x) );: u. Hence x E 02.U , which is impossible since 02.U C 02,1• . The other
inequality (iii) and statement (iv) are proved in a similar way. - #

5. A GENERALIZED INVERSE CHARACTERIZATION THEORE\t

The two extension Theorems, 6 and 9, lead us to consider the following
classes of function spaces:

C1 = {c[Q, H), Q compact metric and H arbitrary unitary},

C2 = {C[, H), Q perfectly normal, alepho-compact, and H
separable complete unitary},

Ca = {C[Q, H], Q collectionwise perfectly normal, alepho
compact, and H complete unitary}.

The class CI results from case (ii) of Theorem 6 and the fact that alepho
compact second axiom spaces (including metric spaces) are compact; this
class was treated at length by Brosowski [1].

For these classes the following more general extension theorem holds:

LEMMA E. Let C[Q, H] belong to one of the classes CI , C2 , or Ca • Then:

(i) for each closed subset A of Q there exists a countable ordered
family V2 = {02 • 1 , t E M 2}, possessing the properties formulated in Lemma D;
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(ii) each function f: Q --+ H, def(f) = A has an extension g E C[Q, H]
such that

(a) g(x) = j(x), X E A,

(b) II g(x)11 < SUP",eA II g(x)ll, x E Q\A,

(c) for t < u, t, u E M 2, and OCt) 0= Q\02,t :

°< sup II g(x)11 ~ sup II g(x)li < sup II g(x)il. #
XEO(t) XEO( u) xEA

Now we are in a position to prove the following generalized inverse
characterization theorem:

THEOREM 10. Let c[Q, H] belong to one of the classes C1 , C2 , or Ca , and
G C c[Q, H]. If an element S EGis a best approximation to a function
fE C[Q, H], ff/' G, if and only if for all T EGf ,

inf {Re<U - S)(x), (T - S)(x)} ~ 0,
xEE(f.S) .

(5.1)

with E(j, S) the set of extremal points off - S in Q, then G is regular (in the
sense of Definition I).

Proof. Since Q is alepho-compact, Q is countably compact (i.e., every
infinite set of Q has at least one limit point, Kowalsky [13, p.82]). As a
consequence, the generalized Kolmogorov criterion is equivalent to the
classical one.

Consider an arbitrary element fl E c[Q, H], II It II < 00, S, T E Gf , and
1

an arbitrary closed subset A of Q, for which statement (Ro) holds true. Then,
by virtue of the Cauchy-Schwartz inequality, there exist numbers a, aj E Ro+
such that

infllh(x)11 ;;;: a;
xEA

inf II(S - T)(x)li ;;;: a1 •
xEA

Now Lemma E implies the existence of a function g E c[Q, H] such that
g(x) = h(x)/llh(x)11 for x E A, and satisfying the conditions (iib, c). When
introducing the function

f = tmin(a, t) g + S,

condition (Ro) implies

. f \ (fl(X) ( S)( »1
~1JA IRe II fl(x) II ' T - x I > 0.
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Since the inner product is a continuous function, there consequently exists
an open neighborhood Ao of A such that

inf {Re«(f S)(x), (T S)(x) e1 , (5.2)
XEA o

with e1 arbitrary small positive.
The sets O(e) = {x E Q: I: g(x)il :> I - e], e E Ro+' are open in Q. From

Lemma D we infer that there exists a set O2 ,/. , f 1 < 1, such that 02,t1 r;;;: Ao •
Then it follows from (iic) of Lemma E that

sup g(x)!: t1 •

XEO(t1)

Consequently there exists an e E ]0, I - fir such that A C O(e) C O2•1, C Ao .
Hence it follows from (5.2) that

inf {Re«(f- S)(x), (T -- S)(x)J 0.
XEO(e)

The assumptions of the theorem then imply that S is not a best approximation
f The conclusion that G is regular now follows by exactly the same arguments
as used by Brosowski [1, p.78]. #

We recall that a generalized direct characterization is given as Theorem 1
and holds under no restrictions at all upon Q and H.
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